Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Comb Chem High Throughput Screen ; 25(14): 2358-2369, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2299098

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is a virus whose genetic material is positive single-stranded RNA, being responsible for coronavirus disease 2019 (COVID- 19), an infection that compromises the lungs and consequently the respiratory capacity of the infected individual, according to the WHO in November 2021, 249,743,428 cases were confirmed, of which 5,047,652 individuals died due to complications resulting from the infection caused by SARSCOV- 2. As the infection progresses, the individual may experience loss of smell and taste, as well as breathing difficulties, severe respiratory failure, multiple organ failure, and death. Due to this new epidemiological agent in March 2020 it was announced by the director general of the World Health Organization (WHO) a pandemic status, and with that, many research groups are looking for new therapeutic alternatives through synthetic and natural bioactives. This research is a literature review of some in silico studies involving natural products against COVID-19 inflammation published in 2020 and 2021. Work like this presents relevant information to the scientific community, boosting future research and encouraging the use of natural products for the search for new antivirals against COVID-19.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Pandemias , Inflamación/tratamiento farmacológico
2.
Curr Med Chem ; 28(27): 5498-5526, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1443922

RESUMEN

BACKGROUND: Natural products are useful agents for the discovery of new lead- compounds and effective drugs to combat coronaviruses (CoV). OBJECTIVE: The present work provides an overview of natural substances, plant extracts, and essential oils as potential anti-SARS-CoV agents. In addition, this work evaluates their drug-like properties which are essential in the selection of compounds in order to accelerate the drug development process. METHODS: The search was carried out using PubMed, ScienceDirect and SciFinder. Articles addressing plant-based natural products as potential SARS-CoV or SARS-CoV-2 agents within the last seventeen years were analyzed and selected. The descriptors for Chemometrics analysis were obtained in alvaDesc and the principal component analysis (PCA) was carried out in SIMCA version 13.0. RESULTS: Based on in vitro assays and computational analyses, this review covers twentynine medicinal plant species and more than 300 isolated substances as potential anti-coronavirus agents. Among them, flavonoids and terpenes are the most promising compound classes. In silico analyses of drug-like properties corroborate these findings and indicate promising candidates for in vitro and in vivo studies to validate their activity. CONCLUSION: This paper highlights the role of ethnopharmacology in drug discovery and suggests the use of integrative (in silico/ in vitro) and chemocentric approaches to strengthen current studies and guide future research in the field of antiviral agents.


Asunto(s)
Productos Biológicos , COVID-19 , Plantas Medicinales , Antivirales/farmacología , Antivirales/uso terapéutico , Productos Biológicos/farmacología , Humanos , SARS-CoV-2
3.
Curr Med Chem ; 29(14): 2530-2564, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1328034

RESUMEN

BACKGROUND: COVID-19 is still causing long-term health consequences, mass deaths, and collapsing healthcare systems around the world. There are no efficient drugs for its treatment. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be important in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE: This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHODS: The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS: Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed immunomodulatory effects in previous studies. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION: This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidates for the search of antibiotics against COVID-19.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas , Humanos , Inmunidad , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2
4.
EXCLI J ; 20: 252-275, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1102721

RESUMEN

New coronavirus SARS-CoV-2 (COVID-19) has caused chaos in health care systems. Clinical manifestations of COVID-19 are variable, with a complex pathophysiology and as yet no specific treatment. It has been suggested that the renin-angiotensin-aldosterone system has a possible role in the severity of cases and the number of deaths. Our hypothesis is that drugs with inverse agonist effects to the angiotensin-1 receptor can be promising tools in the management of patients with COVID-19, possibly avoiding complications and the poor evolution in some cases. Any risk factors first need to be identified, and the most appropriate time to administer the drugs during the course of the infection also needs to be established. Several angiotensin receptor blockers (ARB) have a favorable profile and are important candidates for the treatment of COVID-19. In this review we discussed a set of compounds with favorable profile for COVID-19 treatment, including azilsartan, candesartan, eprosartan, EXP3174, olmesartan, telmisartan, and valsartan. They are effective as inverse agonists and could reduce the "cytokine storm" and reducing oxidative stress. As COVID-19 disease has several evolution patterns, the effectiveness of ARB therapy would be related to infection "timing", patient risk factors, previous use of ARBs, and the specific molecular effects of an ARB. However, controlled studies are needed to identify whether ARBs are beneficial in the treatment of patients with COVID-19.

5.
Curr Top Med Chem ; 20(24): 2126-2145, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-648861

RESUMEN

BACKGROUND: The emergence of a new coronavirus (CoV), named 2019-nCoV, as an outbreak originated in the city of Wuhan, China, has resulted in the death of more than 3,400 people this year alone and has caused worldwide an alarming situation, particularly following previous CoV epidemics, including the Severe Acute Respiratory Syndrome (SARS) in 2003 and the Middle East Respiratory Syndrome (MERS) in 2012. Currently, no exists for infections caused by CoVs; however, some natural products may represent potential treatment resources, such as those that contain diterpenes. OBJECTIVE: This study aimed to use computational methods to perform a virtual screening (VS) of candidate diterpenes with the potential to act as CoV inhibitors. METHODS: 1,955 diterpenes, derived from the Nepetoideae subfamily (Lamiaceae), were selected using the SistematX tool (https://sistematx.ufpb.br), which were used to make predictions. From the ChEMBL database, 3 sets of chemical structures were selected for the construction of predictive models. RESULTS: The chemical structures of molecules with known activity against SARS CoV, two of which were tested for activity against specific viral proteins and one of which was tested for activity against the virus itself, were classified according to their pIC50 values [-log IC50 (mol/l)]. CONCLUSION: In the consensus analysis approach, combining both ligand- and structure-based VSs, 19 compounds were selected as potential CoV inhibitors, including isotanshinone IIA (01), tanshinlactone (02), isocryptotanshinone (03), and tanshinketolactone (04), which did not present toxicity within the evaluated parameters.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Diterpenos/química , Diterpenos/farmacología , Lamiaceae/química , Neumonía Viral/tratamiento farmacológico , Antivirales/farmacocinética , COVID-19 , Biología Computacional , Diterpenos/farmacocinética , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Modelos Químicos , Simulación del Acoplamiento Molecular , Estructura Molecular , Pandemias , Valor Predictivo de las Pruebas , SARS-CoV-2 , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA